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Summary 

Combination of a receptor unit with a rigid shaping unit produces a new type 
of receptor molecules of the cryptand class, hollow macropolycyclic molecules 
termed speleands, capable of substrate inclusion. Two members of this category of 
compounds 1 and 2, have been synthesized by connecting in a single step, a macro- 
cyclic [ 1 8]-N303 binding unit with a rigid cyclotriveratrylene unit via three bridges. 
Compound 1 binds the methylammonium cation forming both external and 
internal complexes; for the latter a 'speleate' structure, schematically represented by 
15, may be proposed. 

Cr-vptates are defined as inclusion complexes in which the substrate species is 
(are) contained in the intramolecular cavity of a macropolycyclic receptor molecule. 
Introduced originally for alkali and alkaline-earth complexes of macrobicyclic 
cryptands, this general concept has since been extended to inclusion complexes of a 
large variety of substrates (other inorganic cations, organic cations, as well as 
anionic species) with macropolycyclic molecules of various shapes and sizes, design- 
ed so as to display molecular recognition processes [ 11. The molecular architecture 
of these macropolycycles is based on the combination of various sub-units possess- 
ing specific structural properties and containing defined binding sites, in order to 
achieve receptor-substrate complementarity for both geometry and interactions. 
Furthermore, ligand dynamics, i.e. the rigidity/flexibility balance, influence sub- 
strate binding and exchange rates. 

Within this general class of cryptand molecules, the connection of polar 
binding sub-units to large, concave, more or less rigid and hydrophobic shaping 
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components, should produce a new type of hollow macropolycyclic receptors, 
capable of substrate inclusion. We propose the terms speleands (from onrjAaiov 
= cave) and speleates for individualizing this sub-class of cryptands and of inclusion 
complexes. The binding sub-units may be derived from chelating, tripodal or 
macrocyclic arrangements of binding sites (as for instance in polynucleating crypt- 
ands [2]). The shaping components may belong to different types of framework like 
phenol-aldehyde condensation products, cyclodextrins [3] or functionalized porphy- 
rins and tetrapyrroles [4]. The former are of special interest since, in addition to 
known representatives (e.g. veratrole-formaldehyde cyclotriveratrylene [5-lo], 
phenol-formaldehyde [ 1 11 [ 121 calixarene [ 131 [ 141 or resorcinol-aldehyde [ 15- 171 
condensation products), many intriguing variations remain to be investigated. 
Furthermore, such substances form clathrate inclusion compounds with organic 
molecules in the solid state (cJ: [14] [IS]) a property which may confer additional 
binding potential to speleands, especially towards hydrophobic substrates. 

We now report preliminary results on the synthesis and substrate-binding 
properties of two members of this family of macropolycycles (compounds 1 and 2) 
which result from the connection of a macrocyclic binding sub-unit of type 
[ 1 8]-N303 (3, [ 191) to the cyclotriveratrylene (CTV) derivative 4 [9] [20] by three 
bridges. Triply bridged coreceptors incorporating two [ 1 8]-N303 rings and forming 
molecular cryptates have been described [21], as well as a molecular cage formed by 
two triply connected CTV units [20]. 

The racemic (C3)-tricarboxylic acid ( k )5 [20] was converted into the trichloride 
6 by treatment with thionyl chloride. Condensation of 6 with 3 in high dilution 
conditions [22] afforded the tricarboxamide 7 (m.p. ~ 3 2 5 "  (dec.)) in 35% yield 
after purification by chromatography over alumina. Reduction of 7 with diborane 
[22], gave the CTV-[ 18]-N303 molecular cage 1 (m.p. = 230") in 85% yield. 

The CTV unit bearing longer branches was prepared as follows. Treatment of 
the sodium salt of vanillin with 1CH2CH20CH2CO2CH3 (for the corresponding 
chloro-analog see [23]) gave 8 (m.p. 85"; 85%) which was reduced to the alcohol 9 
(m.p. 40"; quantitative yield) with H2/Raney nickel. Trimerization of 9 with perchlo- 
ric acid in methyl orthoformate solution at room temperature for 20 h gave the CTV 
trimer 10 in 40% yield (m.p.: 98"). The crude triacid 11, obtained as a glassy solid 
by basic hydrolysis of 10 (NaOH in methanol/water 95 : 5) ,  was converted to the 
corresponding trichloride 12 by treatment with thionyl chloride. Following the same 
reaction sequence as for 1, 12 was condensed with 3 to give the tricarboxamide 13 
(glass; 40%), which was reduced to the larger CTV-[18]-N3O3 cage 2 (glass; 65%). 
All new compounds had physical properties in agreement with the proposed struc- 
tures. 

Compounds 1 and 2 represent a new type of macropolycyclic mesomolecules 
[l], speleands, containing both a receptor site and a rigid shaping unit. They combine 
the features of bis-[ 18]-N303 cylindrical macrotetracycles [2 11 and of the bis-CTV 
molecular cage [20]. 

The overall shape of 1 and 2 may be described as a circular component topped 
by the CTV unit in its usual 'crown'-type conformation (as shown by the charac- 
teristic AB-quadruplet of the methylene bridges at about 4.7 and 3.5 ppm, J =  14 Hz 
in the 'H-NMR. spectrum [9] [20]). 
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Compounds 1 and 2 are hollow molecules, whose intramolecular cavity is 
maintained by the rigid CTV unit [9]. The flexible bridges permit adjustment of the 
cavity height along the C3-axis; the maximum size is clearly larger for 2 ( z  8 A) 
than for 1 ( N, 5 A). 
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The [18]-N303 macrocyclic sub-unit of 1 and 2 may serve as receptor site for 
cationic species. Indeed, the tris (N-methyl) derivative 14 binds metal cations and is 
especially well-suited for selective complexation of primary ammonium cations [ 191. 
The latter property is of particular interest in the present case, since binding of 
R-NHZ by anchoring of the NH$ head group into the [ 1 8]-N303 ring, may occur 
either inside or outside the central cavity depending on the nature of the R residue. 
Preliminary experiments have shown that 1 dissolves about 1 equivalent CH3NHz 
picrate into CDC13/CD30D 9 : 1 or into CD2C12 yielding a mixture (about 2 : 1) of 
two species giving CH,-NH$ NMR. signals around 2.3 ppm and - 0.1 ppm (ill- 
resolved quadruplet, J N , ~  Hz in CD2C12). They may be identified respectively as the 
exo- and the endo-complexes, if we accept that the large shift to high field is diag- 
nostic of inside binding, thus placing the CH3 group of the substrate into the 
shielding region of the aromatic rings, as observed for the diammonium cryptates 
of cylindrical coreceptors [21] [24]. A schematic representation of this cryptate-type 
inclusion complex, the methylammonium speleate of 1, is given by structure 15. 
R-NH? substrates with R larger than CH3 apparently do not bind inside (experi- 
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ments in progress). Double-irradiation ‘H-NMR. experiments indicate that endo- 
and exo-bound CH,NHf species exchange slowly (saturation transfer), and that the 
protons of exo- and endo-NHl groups undergo respectively fast and slow exchange 
with the solvent. The binding properties of 2 are being investigated together with 
further studies of 1, in particular by low-temperature NMR. 

Developments of the chemistry of speleands may be concerned with: i) the 
incorporation of rigid rather than flexible bridges, as in 1 and 2, or rigidification of 
the basic components by structural modifications (for a recent example on calix- 
arenes see [25]), in order to enforce more strongly a preformed cavity; ii) the 
synthesis of optically active 1 and 2 since the basic CTV unit is chiral and has been 
resolved [9]; iii) the introduction of polar groups in order to confer solubility in 
water and to permit operation of hydrophobic effects. In a broader view, a great 
variety of other combinations of receptor and architectural units may be envisaged, 
as briefly mentioned above, adding another facet to the chemistry of molecular 
receptors. 
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